(1) Li, F., Guo, F., Gao, W., Cai, Y., Zhang, Y*., & Yang, Z. (2022). Environmental DNA biomonitoring reveals the interactive effects of dams and nutrient enrichment on aquatic multitrophic communities. Environmental Science & Technology, 56(23), 16952-16963.
(2) Li, F., Qin, S., Wang, Z., Zhang, Y*., Yang, Z. (2023) Environmental DNA metabarcoding reveals the impact of different land use on multitrophic biodiversity in riverine systems. Science of the Total Environment, 855: 158958.
(3) Qin, S#., Li, F#., Zou, Y., Xue, J., Zhang, Y*., & Yang, Z. (2023). eDNA-based diversity and multitrophic network reveal the effects of land use and pollutants on the subtropical Dongjiang River systems. Environmental Pollution, 334, 122157.
(4) Li, Z., Li, F*., Qin, S., Guo, F., Wang, S., & Zhang, Y. (2024) Environmental DNA biomonitoring reveals the human impacts on native and non-native fish communities in subtropical river systems. Journal of Environmental Management, 349, 119595.
(5) Wang, Z#., Li, F#*., Qin, S., Guo, F., Zhang, Y*., & Yang, Z. (2024) Environmental DNA and remote sensing datasets reveal the spatial distribution of aquatic insects in a disturbed subtropical river system. Journal of Environmental Management, 351, 119972.
(6) Li, X., Li, F*., Min, X., Xie, Y., & Zhang, Y. (2023). Embracing eDNA and machine learning for taxonomy-free microorganisms biomonitoring to assess the river ecological status. Ecological Indicators, 155, 110948.